Effect of vibratory stimulation training on maximal force and flexibility.

In this study, we investigated a new method of training for maximal strength and flexibility, which included exertion with superimposed vibration (vibratory stimulation, VS) on target muscles. Twenty-eight male athletes were divided into three groups, and trained three times a week for 3 weeks in one of the following conditions:

(A) Conventional exercises for strength of the arms and VS stretching exercises for the legs.
(B) VS strength exercises for the arms and conventional stretching exercises for the legs.
(C) Irrelevant training (control group). The vibration was applied at 44 Hz while its amplitude was 3 mm.

The effect of training was evaluated by means of isotonic maximal force, heel-to-heel length in the two-leg split across, and flex and reach test for body flexion. The VS strength training yielded an average increase in isotonic maximal strength of 49.8%, compared with an average gain of 16% with conventional training, while no gain was observed for the control group.

The VS flexibility training resulted in an average gain in the legs split of 14.5 cm compared with 4.1 cm for the conventional training and 2 cm for the control groups, respectively. The ANOVA revealed significant pre-post training effects and an interaction between pre-post training and 'treatment' effects (P < 0.001) for the isotonic maximal force and both flexibility tests. It was concluded that superimposed vibrations applied for short periods allow for increased gains in maximal strength and flexibility.

This is a well designed study conducted not on the elderly but on 28 young, healthy, males. They even used a control group.

GROUP
ISOTONIC MAXIMAL STRENGTH
Vibration Training.........................+ 49.8%
Conventional Training......................+ 16%
Control Group+ 0%

GROUP
LEG SPLIT FLEXIBILITY
Vibration Training.........................+ 14.5 cm
Conventional Training......................+ 4.1 cm